skip to main content


Search for: All records

Creators/Authors contains: "Nagaoka, Akira"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Thermoelectrics (TEs) are an important class of technology that harvest electric power directly from heat sources. When designing both high performance and environmentally friendly TE materials, the pseudo-cubic structure has great theoretical potential to maximize the dimensionless figure of merit ZT . The TE multinary single crystal with a pseudo-cubic structure paves a new path toward manipulating valley degeneracy and anisotropy with low thermal conductivity caused by short-range lattice distortion. Here, we report a record high ZT = 1.6 around 800 K realized in a totally environmentally benign p-type Na-doped Cu 2 ZnSnS 4 (CZTS) single crystal. The exceptional performance comes from a high power factor while maintaining intrinsically low thermal conductivity. The combination of the pseudo-cubic structure and intrinsic properties of the CZTS single crystal takes advantage of simple material tuning without complex techniques. 
    more » « less
  2. Abstract

    Despite numerous studies on three-dimensional topological insulators (3D TIs), the controlled growth of high quality (bulk-insulating and high mobility) TIs remains a challenging subject. This study investigates the role of growth methods on the synthesis of single crystal stoichiometric BiSbTeSe2(BSTS). Three types of BSTS samples are prepared using three different methods, namely melting growth (MG), Bridgman growth (BG) and two-step melting-Bridgman growth (MBG). Our results show that the crystal quality of the BSTS depend strongly on the growth method. Crystal structure and composition analyses suggest a better homogeneity and highly-ordered crystal structure in BSTS grown by MBG method. This correlates well to sample electrical transport properties, where a substantial improvement in surface mobility is observed in MBG BSTS devices. The enhancement in crystal quality and mobility allow the observation of well-developed quantum Hall effect at low magnetic field.

     
    more » « less